THE UNIVERSITY OF NEWCASTLE

Investigating the Genetics of the Development of Lung Cancer

Vrushali Kashinath Chimankar

MSc Medical Genetics (Glasgow)

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy in

Immunology and Microbiology

December 2020

STATEMENT OF ORIGINALITY

I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision. The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo.

Vrushali Kashinath Chimankar December 2020

Statement of Collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

Vrushali Kashinath Chimanakar

December 2020

Table of Content

A. Acknowledgements	i
B. Abstract	iii
C. Publications and funding related to this thesis	vii
D. Abbreviations	x
E. Figure Table	xii
F. List of Tables	xvii
1 Background	2
1.1 Epidemiology	2
1.2 Risk factors for LC	3
1.2.1 Cigarette smoking and LC	3
1.2.2 Chronic obstructive pulmonary disease (COPD)	7
1.2.3 Ageing	8
1.2.4 Oxidative stress	9
1.2.5 Chronic inflammation	9
1.3 Diagnosis and current treatment	10
1.4 Experimental models to study lung carcinogenesis	12
1.4.1 Mouse models of cancer	12
1.4.2 Susceptible mouse strains	13
1.4.3 Carcinogen-induced mouse model	15
1.4.4 CS-induced mouse model of lung cancer	16
1.4.5 NNK induced mouse model of lung cancer	19
1.4.6 NNK and cigarette smoke-induced mouse models of lung cancer	21
1.5 Summary and Rationale	32
1.6 Hypothesis	33
1.7 Aims	33

2 Methods	35
2.1 Animals	35
2.1.1 Animal ethics:	35
2.1.2 Animal details:	36
2.2 <i>In-vivo</i> experimental procedures	36
2.2.1 CS exposure:	36
2.2.2 Administration of CS carcinogen, NNK:	37
2.2.3 Lung function analysis:	37
2.3 In vitro procedures	38
2.3.1 Endpoint tissue collection	38
2.3.1.1 Lungs	38
2.3.1.2 Tumour dissection:	39
2.3.1.3 Bronchoalveolar lavage fluid (BALF) collection and processing:	39
2.4 Histology procedures	40
2.4.1 BALF staining for assessing airway inflammation:	40
2.4.2 Silanisation of microscope slides	41
2.4.3 Tissue processing and embedding to generate paraffin-embedded tissue blocks	41
2.4.4 Microtome sectioning of the paraffin-embedded tissue blocks on to the silanised slides	42
2.4.5 Haematoxylin and Eosin (H&E) staining for histopathological analysis	42
2.4.6 Statistical analysis	43
3 Establishing a novel mouse model for lung adenocarcinoma	45
3.1 Abstract	46
3.2 Introduction	48
3.3 Preliminary results from previous mouse models	51
3.4 Methods	57
3.4.1 Experimental mouse model	57
3.4.2 Experimental outcomes	57

3.5 Results

3.5.1 Chronic CS exposure in NNK treated mice for 12 weeks followed by 12 weeks	of air
recovery period induces bronchioalveolar adenomas in naïve mice.	59
3.5.2 Chronic CS exposure in NNK treated mice for 12 weeks followed by 12 weeks of air reco	overy
period resulted in changes in compliance in only NNK treated mice, whilst no changes in the	other
lung function parameters were observed.	61
3.5.3 Chronic CS exposure in NNK treated mice for 18 weeks followed by 18 weeks of air reco	overy
period induces BAA in naïve mice	63
3.5.4 Chronic CS exposure in NNK treated mice for 18 weeks followed by 18 weeks of recovery p	eriod
resulted in changes in lung function.	65
3.5.5 Chronic CS exposure in NNK treated mice for 24 weeks followed by 24 weeks of air reco	overy
period induces BAA and BAC in naïve mice	67
3.5.6 Chronic CS exposure in NNK treated mice for 24 weeks followed by 24 weeks of air reco	overy
period did not induce any changes in lung function parameters.	69
3.5.7 Chronic CS exposure of 36 weeks in NNK treated mice followed by 27 weeks of air reco	overy
period induced bronchioalveolar adenoma and bronchioalveolar carcinoma	71
3.5.8 Chronic CS exposure of 36 weeks in NNK treated mice followed by 27 weeks of air reco	overy
period induced pulmonary inflammation	73
3.5.9 Chronic CS exposure of 36 weeks in NNK treated mice followed by 27 weeks of air reco	overy
period did not induce any changes in lung function parameters	75
3.6 Discussion	77
3.6.1 Our mouse models develop BAA and BAC in shorter time-frame	77
3.6.2 Our mouse models showed higher tumur incidence and multiplicity	78
3.6.3 Our mouse models showed progression of BAA to BAC	80
3.6.4 Assessing inflammation in our mouse models of BAA and BAC	80
3.6.5 Increase in CS exposure and air recovery period induced lung function changes in some m	iouse
models	81
3.6.6 Strengths and limitations	83

4 Whole genome sequencing of mouse genome to understand the	e genetic events
leading to the development of adenocarcinoma	86
4.1 Abstract	87
4.2 The genomics of lung carcinogenesis	89
4.3 Proto-oncogenes	90
4.3.1 EGFR	91
4.3.2 RAS	92
4.3.3 BRAF	94
4.3.4 HER2/ERBB-2	95
4.4 Tumour suppressor genes	96
4.4.1 TP53	97
4.4.2 LKB1/STK11	98
4.4.3 CDKN2A	100
4.4.4 RB1	101
4.4.5 NF1	102
4.5 Identification novel genes in lung carcinogenesis	106
4.6 Genome sequencing strategies for novel gene discovery	108
4.7 Using mouse genome sequencing to understand development an	d progression of
ADC	110
4.8 Use of bioinformatics tools to analyse WGS data	114
4.9 Methods	116
4.9.1 Experimental mouse model	116
4.9.2 Experimental outcomes	116
4.9.3 DNA extraction, library preparation for WGS	116
4.9.4 Identification of somatic SNPs, insertions and deletions (indels)	117
4.9.5 Additional bioinformatics analysis	118
4.10 Results	119

4.10.1 Chronic CS exposure of 36 weeks in NNK treated mice followed by 27 weeks of air recovery period induced bronchioalveolar adenoma with dysplasia, anaplasia and bronchioalveolar carcinoma

4.10.2 Whole-genome sequencing identified somatic mutations in genes invo	olved in lung
carcinogenesis	122
4.10.3 Whole genome sequencing revealed higher C to T transition in NNK/CS tumour	rs 130
4.10.4 Whole genome sequencing revealed distinct signatures for Sal/CS tumours	s compared to
NNK/CS tumour	131
4.10.4.1 Single base substitution signatures	131
4.10.4.2 The mutational signature associated with carcinogens	134
4.10.5 Whole genome sequencing identified increased mutations in non-coding region	ons of NNK/CS
tumours	135
4.11 Discussion	136
4.11.1 Choosing the mouse model for WGS analysis	136
4.11.2 Bioinformatics tools used for analysing the WGS raw data	137
4.11.3 Identification of distinct signatures using WGS data	138
4.11.3.1 Mutational signatures associated with single base substitutions	138
4.11.3.2 Mutational signature associated with carcinogens	140
4.11.4 Mutational spectrum in non-coding region	140
4.12 Strengths and limitations	140
5 Refining the existing mouse models of lung cancer	145
5.1 Abstract	146
5.2 Introduction	148
5.3 Methods	153
5.3.1 Experimental mouse model	153
5.3.2 Experimental outcomes	154
5.4 Results	155

5.4.1 Chronic CS exposure for 8 weeks followed by 3 doses of NNK treatment and 8 weeks	of air
recovery period induced bronchioalveolar adenomas in naïve mice.	155
5.4.2 Chronic CS exposure of 8 weeks followed by 3 doses of NNK treatment and 8 weeks	of air
recovery period increased neutrophils in CS/Sal and CS/NNK-exposed mice	156
5.4.3 Chronic CS exposure of 8 weeks followed by 3 doses of NNK treatment and 8 weeks	of air
recovery period induced changes in only inspiratory capacity in CS/NNK mice, whilst no chan	ges in
the other lung function parameters were observed.	159
5.4.4 Chronic CS exposure for 8 weeks followed by 1 dose of NNK and 8 weeks of air recovery p	period
induced bronchioalveolar adenomas in naïve mice.	160
5.4.5 Chronic CS exposure of 8 weeks followed by 1 dose of NNK treatment and 8 weeks of air rec	overy
period induced pulmonary inflammation in CS/Sal-exposed mice	162
5.4.6 Chronic CS exposure of 8 weeks followed by 1 dose of NNK treatment and 8 weeks of air rec	overy
period did not induce any changes lung function parameters	164
5.4.7 Chronic CS exposure for 12 weeks followed by 1 dose of NNK and 12 weeks of air rec	overy
period induced BAAin naïve mice.	165
5.4.8 Chronic CS exposure of 12 weeks followed by 1 dose of NNK treatment and 12 weeks	of air
recovery period induced pulmonary inflammation in CS/Sal-exposed mice	168
5.4.9 Chronic CS exposure of 12 weeks followed by 1 dose of NNK treatment and 12 weeks	of air
recovery period did not induced any changes lung function parameters	170
5.5 Discussion	171
5.5.1 Mouse models with CS exposure followed by NNK administration and air recovery μ	period
successfully induced BAA	171
5.5.2 Mouse models with CS exposure followed by NNK administration and air recovery p	period
successfully induced airway inflammation in some models	174
5.5.3 Mouse models with CS exposure followed by NNK administration and air recovery period	failed
to induce lung function changes	175
5.5.4 Strengths and limitations	177
5.5.5 Future prospects	179

General Discussion

6.1 Significance of the research	183
6.2 Major findings of the thesis	184
6.2.1 Mouse models developed BAA and BAC	184
6.2.2 Inflammation	187
6.2.3 Lung function changes	188
6.2.4 Whole-genome sequencing analysis identified genes involved in lung carcinogenesis	189
6.3 Future directions	192
6.3.1 Profiling inflammation in our mouse model	192
6.3.2 Assessing emphysema in our mouse model	193
6.3.3 Additional analysis to be completed for the study	193
6.3.3.1 Validation using targeted sequencing	194
6.4 RNA sequencing for assessing gene expression	194
6.5 An alternative mouse model for LC	195
6.6 Concluding remarks	196
7 References	198

A. Acknowledgements

I owe my deepest gratitude to my primary supervisor Professor Philip Hansbro for providing me with the opportunity to undertake this PhD project under his guidance. I would also like to sincerely thank him and my co supervisor Dr Chantal Donovan as without their constant support, guidance and mentorship this PhD thesis would not have been possible. I would specially like to offer my sincere thanks and gratitude to Dr Chantal Donovan for genuinely caring for my research as well as for my mental well-being. I am truly grateful to Dr Nicole Hansbro for always being there for me, you have always been my point of contact when I was in trouble professionally and personally. Your constant support and help have really made this journey easier.

I would like to thank the core members of the Lung cancer team Priyanka Sahu and Sophie Pickles for their constant help, support and advice. You both have really been a strong pillar for me throughout my PhD. I would specially like to thank my dear friend Sophie Pickle, you have been my colleague, housemate and my constant support throughout my PhD. The number of times you have stepped up to ease my burden is countless and I am really grateful for it.

I would like to extend my heartfelt thanks to all the past and present members of Hansbro and Horvat group for accepting me as a part of this big amazing group. I wish to thank Dr Henry Gomez and Dr Kurtis Budden for unofficially mentoring me and teaching me all the skills I needed to complete my thesis. Your constant banter was a real stressbuster and made this journey so much fun. I would like to make special mention of Associate Professor Jay Horvat for his pep talks that helped me in stressful situations. I would specially like to thank Dr Bernadette Jones, Tegan Hunter, Dr Alexandra Brown, Dr Prema Mono Nair, Dr Tatt Jhong Haw, Lohis Balachandran and Dr. Richard for their help in endpoints and Nathalie Kiaos, Emma Bee, Bree Anderson, Bradley Mitchell, Carol Devine, Simon Gao for helping me with smoking protocol and animal monitoring. I would also like to thank all members of the Centenary UTS Centre for inflammation for their help and support during the last one year of my PhD. I would sincerely like to thank all our collaborators, Dr Helle Bielefeldt- Ohmann for performing all the histology analysis, Dr Neil Watkins, Dr Parwinder Kaur, Dr Bhavna Hurgobin and Dr Alen Faiz for helping me with the whole genome sequencing analysis.

The acknowledgement wouldn't be complete without thanking the University of Newcastle for providing me with the opportunity to work in one of the best research institutes, Hunter Medical Research Institute. I would also like to thank the university for providing me with the scholarships and student funds that helped me survive this PhD. I would like to thank Maitland Cancer Appeal for providing additional funding that helped me to conduct my research. I would like to extend my sincere gratitude to Jennie Thomas for providing me with the prestigious Emlyn and Jennie Thomas Postgraduate Medical Research Scholarship which not only helped me to survive my PhD but also boost my morale.

Finally, I would like to thank the people who mean the most to me in my life. I wouldn't have been doing what I love if it was not for my parents and my sister, Karuna. Thank you all for always believing in me and encouraging me to follow my dreams even if that meant being thousands of miles away from you all. Your constant encouragement, understanding and pride has always lifted me in my lowest time. And a special thanks to my partner, Pritesh for being my solid rock specially during the last couple of weeks. Thanks for pushing me to do better and always having my back.

This year has been particularly stressful and difficult and I would like to once again thank each and every one mentioned above as this thesis wouldn't have been possible without your support.

ii

B. Abstract

Background: Lung Cancer (LC) is one of the most commonly diagnosed cancers and is a leading cause of cancer related death worldwide. Cigarette smoking is the major risk factor responsible for development of LC. Despite the advances in cancer therapeutics, LC has a poor survival rate of \sim 15% over five years. The current image based diagnostic techniques detect LC when the tumour is already at an advanced stage or metastasised. Since we do not have the data on genetic alterations that takes place early in the development of LC (preneoplastic lesions), the currently available biomarker based diagnostic techniques also fail in early diagnosis. The main problem with obtaining data on genetic alteration for preneoplastic lesions is the difficulty in tissue collection from humans when the tumour is at early stages. However, since mouse models can be manipulated to develop different stages of LC, the tumour tissue can be collected at different stages and analysed to identify genetic alterations responsible for preneoplastic lesions.

Hypothesis and Aims: Our laboratory has previously developed a mouse models that develops bronchioalveolar adenoma (BAA) (early stage of LC) in response to cigarette smoke and tobacco carcinogen, 4-methylnitrosamino-3-pyridyl-1-butanone (NNK). We hypothesise that this mouse model could be used as reference to establish a clinically relevant mouse models that develop both BAA and bronchioalveolar carcinoma (BAC) (late stage of LC). Performing whole genome sequencing on tumours isolated from mouse model that develop BAC will enable identification of genetics alteration responsible for BAC. The validation of these genetic alteration in mouse models that develop BAA will further enable identification. of genetic alteration that occur early in development of LC. **Methods**: The female A/J mice were treated with 2 carcinogens, cigarette smoke (CS) and NNK. The order of cigarette smoke exposure and NNK administration varied based on the mouse models. The carcinogen treatment was followed by an air recovery period. Histological analysis of the lung was assessed by staining lung sections with haematoxylin and eosin to determine the tumour type, tumour incidence and multiplicity. The airway inflammation was assessed by enumerating the inflammatory cells present in the bronchoalveolar lavage fluid that was collected and processed during the endpoint. Lung function was also analysed using the forced oscillation technique to determine the functional changes in the lung in response to CS exposure and NNK administration.

For genome analysis, whole genome sequencing was performed on DNA extracted from mouse model where NNK treated mice were exposed to CS for 36 weeks followed by an air recovery period of 27 weeks (3xNNK+36wk CS+27wk air reocery period) using Illumina NovaSeq 6000 platform. The resultant WGS data was analyed using bioinformatics tools.

Results: Mouse models where the female A/J mice were treated with 3 doses of NNK followed by 12, 18, 24 and 36 weeks of CS followed by 12, 18, 24 and 27 weeks of air recovery period respectively developed BAA. The mouse model where NNK (3 doses) treated mice were exposed to 24 and 36 weeks of CS followed by 24 and 27 weeks of air recovery period respectively also developed BAC along with BAA. The mouse model where NNK (3 doses) treated mice were exposed to 12 and 36 weeks of CS followed by 12 and 27 weeks of air recovery period showed 100% tumour incidence in 2 experimental groups, one treated with only NNK (NNK/Air) and other treated with both NNK and CS (NNK/CS). The NNK/CS-exposed mice showed a trend of higher tumour multiplicity as compared to the NNK/Air-exposed mice in these mouse models.

The WGS analysis identified 38 somatic mutations in 36 different genes that were common in tumours isolated from NNK/CS and Sal/CS-exposed mice. The genes identified in this analysis were found to be mutated in clinical samples of patients with BAC as seen in COSMIC database. The analysis of WGS data also revealed the mutational processes associated with tumours induced in NNK/CS and Sal/CS-exposed mice by generating mutational signatures. The mutational signature revealed that NNK was the major contributor of carcinogenesis in NNK/CS-exposed mice

The mouse models where female A/J mice were first exposed to CS followed by NNK administration and air recovery period developed BAA. The mouse model where mice where exposed to 8 weeks of CS followed by 3 doses of NNK and 8 weeks of air recovery period showed 100% tumour incidence in 2 experimental groups, one treated with only NNK (Air/NNK) and other treated with both CS and NNK (CS/NNK). The tumour incidence was reduced to 25% and 75% in Air/NNK and CS/NNK-exposed mice respectively in mouse model where mice were exposed to 8 weeks of CS followed by 1 dose of NNK and 8 weeks of air recovery period (8wk CS + 1xNNK + 8wk air recovery period). This model showed a significantly higher tumour multiplicity in CS/NNK-exposed mice as compared to Air/NNK-exposed mice. With increase in CS exposure to 12 weeks followed by 1 dose of NNK and 12 weeks of air recovery period model, the tumour incidence was increased to 87.5% in Air/NNK and CS/NNK-exposed mice. This model showed a trend of higher tumour multiplicity in Air/NNK as compared to CS/NNK-exposed mice.

Conclusion: When the A/J mice were first treated with NNK followed by CS exposure and air recovery period, the mice develop BAA which further progress to BAC with increase in CS exposure beyond 24 weeks in NNK/CS-exposed mice. However, the WGS analysis of tumours from 3xNNK+36wk CS+27wk air recovery period model revealed NNK as the major contributor of carcinogenesis. By exposing the mice first to CS followed by administration of reduced dose of NNK in 8wk CS + 1xNNK + 8wk air recovery period model the tumour multiplicity was increased in CS/NNK-exposed mice as compared to Air/NNK-exposed mice. This suggest that CS might be the major contributor of carcinogenesis in this model, however further analysis is required to confirm this.

C. Publications and funding related to this thesis

Publications:

- Vamshikrishna Malyla, Keshav Raj Paudel, Shakti D Shukla, Chantal Donovan, Ridhima Wadhwa, Sophie Pickles, Vrushali Chimankar, Priyanka Sahu, Helle Bielefeldt-Ohmann, Mary Bebawy, Philip M Hansbro, and Kamal Dua. Recent advances in experimental animal models of lung cancer. Future Medicinal Chemistry 2020; 12: 567-570.
- Gaetano Caramori, Paolo Ruggeri , Sharon Mumby , Antonio Ieni, Federica Lo Bello, Vrushali Chimankar, Chantal Donovan, Filippo Ando, Francesco Nucera, Irene Coppolino, Giovanni Tuccari, Philip Hansbro and Ian M. Adcock. Molecular links between COPD and lung cancer:new targets for drug discovery? Expert opinion on therapeutic targets 2019; 23:539-553
- Bernadette Jones, Chantal Donovan, Gang Liu, Henry M. Gomez, Vrushali Chimankar, Celeste L. Harrison, Cornelis H. Wiegman, Ian M. Adcock, Darryl A. Knight, Jeremy A. Hirota and Philip M. Hansbro. Animal models of COPD: What do they tell us? Respirology.2016 Advance online publication. doi: 10.1111/resp.12908.

Poster presentations:

 Vrushali Chimankar, Chantal Donovan, Sophie Pickles Priyanka Sahu, Parwinder Kaur, Bhavna Hurgobin, Alen Faiz, Helle Bielefeldt-Ohmann, Henry Gomez[,] Vamshikrishna Malyla, Peter Wark, Neil Watkins, Philip M. Hansbro. Can genomic sequencing on the mouse model of lung cancer help us to understand the genetics of human lung cancer at: The Australian Lung Cancer Conference, 2020 19-21 February, Melbourne, Australia.

- 2. Vrushali Chimankar, Sophie Pickles, Chantal Donovan, Priyanka Sahu, Atiqur Rahman, Henry Gomez Vamshikrishna Malyla, Helle Bielefeldt-Ohmann, Peter Wark, Neil Watkins, Philip M. Hansbro. Using experimental mouse models to understand the pathogenesis of lung adenocarcinoma at: Hunter Cancer Research Symposium, 2019 November 8; Newcastle, Australia.
- 3. Vrushali Chimankar, Sophie Pickles, Chantal Donovan, Priyanka Sahu, Atiqur Rahman, Henry Gomez Vamshikrishna Malyla, Helle Bielefeldt-Ohmann, Peter Wark, Neil Watkins, Philip M. Hansbro. Can experimental mouse models help us to understand lung cancer pathogenesis? at: 6th Annual ASMR Hunter Region Satellite Scientific Meeting, the 3rd of June, 2019, Newcastle, Australia
- 4. Vrushali K Chimankar, Celeste L Harrison, Atiqur Rahman, Sophie Pickles, Priyanka Sahu, Helle Bielefeldt-Ohmann, Peter Wark, Neil Watkins, Philip Hansbro.Mouse models to investigate the genetic mechanism underlying the development of Non-small cell lung cancer at: Hunter Cancer Research Symposium, 2018 November 1; Newcastle, Australia.
- 5. Vrushali K Chimankar, Celeste L Harrison, Atiqur Rahman, Sophie Pickles, Priyanka Sahu, Helle Bielefeldt-Ohmann , Peter Wark, Neil Watkins , Philip Hansbro.Mouse models to investigate the genetic mechanism underlying the

development of Non-small cell lung cancer at: Sydney Cancer Conference 2018 October 11-12; Newcastle, Australia.

6. Vrushali K Chimankar, Celeste L Harrison, Atiqur Rahman, Sophie Pickles, Priyanka Sahu, Helle Bielefeldt-Ohmann, Peter Wark, Neil Watkins, Philip Hansbro. Investigating the Genetics of the Development of Lung Cancer. Poster session presented at: Hunter Cancer Research Symposium, 2017 November 24; Newcastle, Australia.

Funding Related to this thesis

Project title: Identification of genomic mutations associated with the development and progression of lung cancer for use in early diagnosis Sponsor/scheme: Cancer Council NSW/Research Grant Funding period: 2016-2020 Total funds awarded: \$360,000

D. Abbreviations

ADC	Adenocarcinoma
ALK	Anaplastic lymphoma kinase
АМРК	Amp activating protein kinase
BAA	Bronchioalveolar adenoma
BAC	Bronchioalveolar carcinoma
BALF	Bronchoalveolar lavage fluid
BAP	Benzo(a) pyrene
BRAF	V-raf murine sarcoma viral oncogene homolog b
CDKN2A	Cyclin-dependent kinase inhibitor 2a
CS	Cigarette smoke
СТ	Computerised tomography
DSS	Disease specific survival
EGFR	Epidermal growth factor receptor
FEV	Forced expiration volume
GDP	Guanosine diphosphate
GWAS	Genome-wide association study
HER2	Human epidermal growth factor receptor 2
IVC	Individually ventilated cages
KRAS	V-kiras2 kirsten rat sarcoma viral oncogene homolog
LC	Lung cancer
LKB1	Liver kinase b1
LOH	Loss of heterozygosity
MAP2K1	Mitogen-activated protein kinase kinase 1
МАРК	Mitogen-activated protein kinase
MS	Mainstream smoke
MDSC	Myeloid-derived suppressor cells
NGS	Next generation sequencing
NHMRC	National health and medical research council
NK	Natural killer
NNK	4-methylnitrosamino-3-pyridyl-1-butanone
NNN	N'- nitrosonornicotine

ОСТ	Optimal cutting temperature
OS	Overall survival
РАН	Polycyclic aromatic hydrocarbons
PBS	Phosphate-buffered saline
PFS	Progression free survival
PJS	Peutz-jeghers syndrome
RB	Retinoblastoma
RET	Rearranged during transfection
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
SNP EFFECT	Snpeff
	•
TAMs	Tumour-associated macrophages
TAMs TH	Tumour-associated macrophages Helper t
TAMs TH TILS	Tumour-associated macrophages Helper t Tumor infiltrating lymphocytes
TAMs TH TILS TM	Tumour-associated macrophages Helper t Tumor infiltrating lymphocytes Cd45ro ⁺ memory cells
TAMs TH TILS TM TN	Tumour-associated macrophages Helper t Tumor infiltrating lymphocytes Cd45ro+ memory cells Tumour nest
TAMs TH TILS TM TN TP53	Tumour-associated macrophages Helper t Tumor infiltrating lymphocytes Cd45ro ⁺ memory cells Tumour nest Tumour protein 53
TAMs TH TILS TM TN TP53 TREGS	Tumour-associated macrophages Helper t Tumor infiltrating lymphocytes Cd45ro+ memory cells Tumour nest Tumour protein 53 Regulatory t cells
TAMs TH TILS TM TN TP53 TREGS TS	Tumour-associated macrophages Helper t Tumor infiltrating lymphocytes Cd45ro+ memory cells Tumour nest Tumour protein 53 Regulatory t cells Tumour stroma

E. List of figures

- Figure 1.1 Metabolic activation of NNK and lung carcinogenesis. The NNK metabolism occurs via 2 pathways (i) involves hydroxylation at α-methylene group by cytochrome P450 enzyme to form methanediazohydroxide, which further reacts with DNA to form methyl adducts. These methyl adducts if left unrepaired are capable of inducing G to A transition. (ii) involves hydroxylation at α-methyl carbon to yield 4-(3-pyridyl)-4-oxobutanediazohydroxide, which reacts with DNA to form pyridyloxobutyl adducts ^{25, 26, 28}. These adducts if left unrepaired may induce G to A transition and G to T transversion. If these point mutations occur in important genes, it might trigger LC initiation and progression ^{25, 26}. Image adapted from La DK *et al*,2010 ²⁸
- Figure 3.1 3 doses of NNK and cigarette smoke (CS) increased tumour incidence and multiplicity in NNK treated air exposed mice: (A) Female A/J mice treated with 3 doses of 100mg/kg NNK or Saline (Sal) and exposed to 8 weeks of CS exposure or air (control). (B) Tumour incidence is calculated per group and is presented as mean. (C) Tumour multiplicity is presented as mean ± SEM, For all data n=6/group. *p<0.05, ** p<0.01. Graphs reproduced from data from Dr Celeste Harrison's PhD thesis, University of Newcastle.
- Figure 3.2. 3 doses of NNK and cigarette smoke (CS) exposure followed by air recovery period resulted in 100% tumour incidence and increased tumour multiplicity in NNK treated CS exposed mice: (A)
 Female A/J mice treated with 3 doses of 100mg/kg NNK or saline and exposed to 8 weeks of CS exposure or air followed by 8 weeks of air recovery period. (B) Tumour incidence is calculated per group and is presented as a mean. (C) Tumour multiplicity is presented as mean ± SEM. For all data, n=6/group. *p<0.05, ** p<0.01. Image reproduced from data from Dr Celeste Harrison's PhD thesis, University of Newcastle.
- Figure 3.3. Chronic exposure of CS in NNK treated mice resulted in BAA and BAC: (A) Female A/J mice treated with 3 doses of 100mg/kg NNK or saline (control) and exposed to 12 weeks of CS exposure or Air (control) followed by 12 weeks of air recovery period (B) Histological section of lung BAC (C) Tumour incidence is calculated per group and is presented as mean. (D) Tumour multiplicity is presented as mean ± SEM. For all data n=6-8/group. **p<0.01, ***p<0.001.
- Figure 3.4 Chronic CS exposure in NNK treated mice for 12 weeks followed by 12 weeks of air recovery period induced changes in compliance in only NNK treated mice. (A) Tissue damping (B) Tissue

elastance (C) Dynamic elastance (D) Compliance. Here, n=6-8. All data is presented as mean ± SEM. **p<0.01. 62

- Figure 3.5 Chronic CS exposure in NNK treated mice for 18 weeks followed by 18 weeks induced BAA in NNK/CS-induced mouse: (A) Female A/I mice treated with 3 doses of 100mg/kg NNK or saline (control) and exposed to 18 weeks of CS exposure or Air (control) followed by 18 weeks of air recovery period (B) Histological section of lung BAA 64
- Figure 3.6 Chronic CS exposure in NNK treated mice for 18 weeks followed by 18 weeks of air recovery period induced changes in lung function: (A) Tissue damping (B) Tissue elastance (C) Dynamic elastance (D) Dynamic compliance. Here, n=6-8. All data is presented as mean ± SEM. *p<0.05, **p<0.01. 66
- Figure 3.7 Chronic CS exposure of 24 weeks followed by 24 weeks of air recovery period in NNK treated mice induced BAA and BAC : (A) Female A/I mice treated with 3 doses of 100mg/kg NNK or saline (control) and exposed to 24 weeks of CS exposure or Air (control) followed by 24 weeks of air recovery period (B) Bronchioalveolar adenoma with focal high-grade dysplasia (in situ BAC). 68
- Figure 3.8 Chronic CS exposure in NNK treated mice for 24 weeks followed by 24 weeks of air recovery period did not induce changes in lung function: (A) Tissue damping (B) Tissue elastance.(C) Dynamic 70 elastance .(D) Dynamic compliance. Here, n=6-8. All data is presented as mean ± SEM.
- Figure 3.9 Chronic exposure of CS in NNK treated mice resulted in BAC : (A) Female A/J mice treated with 3 doses of 100mg/kg NNK or saline (control) and exposed to 36 weeks of CS exposure or Air (control) followed by 27 weeks of air recovery period (B) Histological section of lung BAC (C) Tumour incidence is calculated per group and is presented as mean. (D) Tumour multiplicity is presented as mean ± SEM. For all data n=8/group. **p<0.01. 72
- Figure 3.10 Chronic CS exposure of 36 weeks followed by 27 weeks of air recovery period in NNK treated mice induced airway inflammation: (A) Total leukocytes. (B) Macrophages. (C) Lymphocytes. (D)Neutrophils. All data is presented as mean ± SEM, n=8/group. *=0.05,**p<0.01 74
- Figure 3.11 Chronic CS exposure in NNK treated mice for 36 weeks followed by 27 weeks of air recovery period did not induce any changes in lung function: (A) Tissue damping (B) Tissue elastance .(C) Dynamic elastance .(D) Dynamic compliance. Here, n=6-8. All data is presented as mean ± SEM. 76 103
- Figure 4.1 Genetic Pathway linked to lung carcinogenesis

- Figure 4.2. Clonal evolution of cancer cells: Carcinogenesis is initiated when healthy cells acquire genetic mutations that further provides selective growth and proliferative advantage to the mutated cells. Over time, the mutated cell acquires more mutations due to the genetic instability giving rise to different clones with a subset of mutations. These clones with greater tumourogenecity outcompete the other clones and further acquire more mutations.
- Figure 4.3 3 doses of NNK followed by 36 weeks of rest and 27 weeks of air recovery induced BAA and BAC:
 (A) Female A/J mice treated with 3 doses of 100mg/kg NNK or saline (control) i.p. and exposed to 36 weeks of CS exposure or Air (control) followed by 27 weeks of air recovery period. (B) Lung tumour incidence is calculated per group and is presented as mean. (C) Lung tumour multiplicity is presented as mean ± SEM. For all data, n=8/group. **p<0.01, ***p<0.001, ****p<0.0001. Note The individual mice in the NNK/Air and NNK/CS experimental groups developed both BAA and BAC.
- Figure 4.4 Histological progression of BAA to BAC: (A) BAA with moderate dysplasia. (B) BAA with high grade dysplasia (*in situ* BAC). (C) BAC with anaplasia. (D) BAC. All the sections were taken from NNK/CS-exposed mouse. All sections were 5µm thick and were H&E stained.
 121
- Figure 4.5 Tumours isolated macroscopically from the mouse model of LC: (A) Gross tumour incidence is calculated per group and is presented as mean. (B) Gross tumour multiplicity is presented as mean ± SEM. (C) Gross tumour diameter. For all data n=8/group. *p<0.05, **p<0.01.

123

Figure 4.6. Computational pipeline for whole-genome sequencing

- Figure 4.7. Somatic mutations identified by WGS in tumours isolated from mouse model of BAC: (A) Single nucleotide polymorphisms in NNK/CS and Sal/CS tumour samples. (B) Indels NNK/CS and Sal/CS tumour samples. 124
- Figure 4.8. Relative contribution of each somatic point mutation to carcinogenesis: Relative contribution of each mutation type to carcinogenesis for each sample. The mean relative contribution of each somatic mutation type is depicted as bars and the total number of somatic point mutation is indicated for each sample. Image generated using R studio package Mutational pattern.
- Figure 4.9. Mutational signature associated with single base substitution: The relative contribution of each trinucleotide change in each sample analysed by Mutational pattern. (A) Mutational signature associated with NNK/CS. (B) Mutational signature associated with Sal/CS samples. Here, the probability bars for each single base substitutions are presented with different colours. The

horizontal axes represent the mutation types and the vertical axes represents the relative contribution of each mutation type. Image generated using R studio package Mutational pattern. 132

- Figure 4.10. Mutational signature predefined in COSMIC database: (A) Mutational signature 11 (B)
 Mutational signature 1B (C) Mutational signature 3 (D) Mutational signature 4 (E) Mutational
 signature 5. Here, mutational signatures are based on trinucleotide frequency in human cancers. The
 probability bars for each single base substitutions are presented with different colours. The
 horizontal axes represent the mutation types and the vertical axes represents the percentage of each
 mutation type^{283, 287}.
- Figure 4.11. Mutational signatures associated with carcinogenesis: The absolute contribution of mutations associated with specific mutational signatures to carcinogenesis. Image generated using R studio package Mutational pattern 134
- Figure 4.12. Distribution of somatic mutations in the non-coding region of the tumours: Number of mutations in the promoter, promoter flanking region and CTCF binding regions contributing to tumour formation in Sal/CS and NNK/CS tumours. Image generated using R studio package Mutational pattern.
- Figure 5.1 Chronic exposure of CS followed by NNK treatment and air recovery period resulted in BAA : (A)
 Female A/J mice exposed to 8 weeks of CS exposure or Air (control) followed by 3 doses of 100mg/kg
 NNK or saline (control) and 8 weeks of air recovery period (B) Tumour incidence is calculated per group and is presented as mean (C) Tumour multiplicity is presented as mean ± SEM. For all data n=6-8/group. **p<0.01
- Figure 5.2 Chronic CS exposure of 8 weeks followed by 3 doses of NNK treatment and 8 weeks of air recovery period resulted in increase in neutrophils: (A) Total leukocytes. (B) Macrophages. (C) Lymphocytes. (D) Neutrophils. All data is presented as mean ± SEM, n=6-8/group. **p<0.01
- Figure 5.3 Chronic CS exposure of 8 weeks followed by 3 doses of NNK treatment and 8 weeks of air recovery period induced changes in inspiratory capacity in CS/NNK-exposed mice (A) Inspiratory capacity (B) Tissue damping (C) Tissue elastance (D) Dynamic elastance (E) Compliance (F) Dynamic compliance Here, n=6-8. All data is presented as mean ± SEM, **p<0.01.
- Figure 5.4 Chronic exposure of CS followed by 1 dose of NNK and air recovery period resulted in BAA : (A)
 Female A/J mice exposed to 8 weeks of CS exposure or Air (control) followed by 1 dose of 100mg/kg
 NNK or saline (control) and 8 weeks of air recovery period (B) Tumour incidence is calculated per

group and is presented as mean (C) Tumour multiplicity is presented as mean ± SEM. For all data n=7-8/group. *p<0.05.

- Figure 5.5 Chronic CS exposure of 8 weeks followed by one dose of NNK treatment and 8 weeks of air recovery period induced airway inflammation : (A)Total leukocytes. (B) Macrophages. (C) Lymphocytes. (D)Neutrophils. All data is presented as mean ± SEM, n=7-8/group.*p<0.05, **p<0.01 163
- Figure 5.6 Chronic CS exposure of 8 weeks followed by 1 dose of NNK treatment and 8 weeks of recovert period did not induce any lung function changes :(A) Inspiratory capacity (B) Tissue damping (C) Tissue elastance (D) Dynamic elastance (E) Compliance (F) Dynamic compliance Here, n=7-8. All data is presented as mean ± SEM.
- Figure 5.7 Chronic CS exposure for 12 weeks followed by NNK administration and 12 weeks of air recovery period induced BAA in naïve mice: (A) Female A/J mice exposed to 12 weeks of CS exposure or Air (control) followed by 1 dose of 100mg/kg NNK or saline (control) and 12 weeks of air recovery period. (B) Tumour incidence is calculated per group and is presented as mean. (C) Tumour multiplicity is presented as mean ± SEM. For all data n=6-8/group. *p<0.05.
- Figure 5.8 Chronic CS exposure of 12 weeks followed by one dose of NNK treatment and 12 weeks of air recovery period induced airway inflammation : (A) Total leukocytes. (B) Macrophages. (C)
 Lymphocytes. (D) Neutrophils. All data is presented as mean ± SEM, n=8/group.
- Figure 5.9. Chronic CS exposure of 12 weeks followed by one dose of NNK treatment and 12 weeks of air recovery period did not induce any lung function changes: (A) Inspiratory capacity (B) Tissue damping (C) Tissue elastance (D) Dynamic elastance (E) Compliance (F) Dynamic compliance Here, n=8. All data is presented as mean ± SEM

179

Figure 5.10. Mouse model of BAA

F. List of Tables

18
23
l their
50
56
57
104
115
126
127
127
128
period

153