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B. Abstract 
 

Background: Lung Cancer (LC) is one of the most commonly diagnosed cancers and is a 

leading cause of cancer related death worldwide. Cigarette smoking is the major risk 

factor responsible for development of LC. Despite the advances in cancer therapeutics, LC 

has a poor survival rate of ~15% over five years. The current image based diagnostic 

techniques detect LC when the tumour is already at an advanced stage or metastasised. 

Since we do not have the data on genetic alterations that takes place early in the 

development of LC (preneoplastic lesions), the currently available biomarker based 

diagnostic techniques also fail in early diagnosis. The main problem with obtaining data 

on genetic alteration for preneoplastic lesions is the difficulty in tissue collection from 

humans when the tumour is at early stages. However, since mouse models can be 

manipulated to develop different stages of LC, the tumour tissue can be collected at 

different stages and analysed to identify genetic alterations responsible for preneoplastic 

lesions.  

 

Hypothesis and Aims: Our laboratory has previously developed a mouse models that 

develops bronchioalveolar adenoma (BAA) (early stage of LC) in response to cigarette 

smoke and tobacco carcinogen, 4-methylnitrosamino-3-pyridyl-1-butanone (NNK). We 

hypothesise that this mouse model could be used as reference to establish a clinically 

relevant mouse models that develop both BAA and bronchioalveolar carcinoma (BAC) 

(late stage of LC). Performing whole genome sequencing on tumours isolated from mouse 

model that develop BAC will enable identification of genetics alteration responsible for 

BAC. The validation of these genetic alteration in mouse models that develop BAA will 

further enable identification. of genetic alteration that occur early in development of LC. 
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Methods: The female A/J mice were treated with 2 carcinogens, cigarette smoke (CS) and 

NNK. The order of cigarette smoke exposure and NNK administration varied based on the 

mouse models. The carcinogen treatment was followed by an air recovery period. 

Histological analysis of the lung was assessed by staining lung sections with haematoxylin 

and eosin to determine the tumour type, tumour incidence and multiplicity. The airway 

inflammation was assessed by enumerating the inflammatory cells present in the 

bronchoalveolar lavage fluid that was collected and processed during the endpoint. Lung 

function was also analysed using the forced oscillation technique to determine the 

functional changes in the lung in response to CS exposure and NNK administration.  

For genome analysis, whole genome sequencing was performed on DNA extracted from 

mouse model where NNK treated mice were exposed to CS for 36 weeks followed by an 

air recovery period of 27 weeks (3xNNK+36wk CS+27wk air reocery period) using 

Illumina NovaSeq 6000 platform. The resultant WGS data was analyed using 

bioinformatics tools. 

 

Results: Mouse models where the female A/J mice were treated with 3 doses of NNK 

followed by 12, 18, 24 and 36 weeks of CS followed by 12, 18, 24 and 27 weeks of air 

recovery period respectively developed BAA. The mouse model where NNK (3 doses) 

treated mice were exposed to 24 and 36 weeks of CS followed by 24 and 27 weeks of air 

recovery period respectively also developed BAC along with BAA. The mouse model 

where NNK (3 doses) treated mice were exposed to 12 and 36 weeks of CS followed by 

12 and 27 weeks of air recovery period showed 100% tumour incidence in 2 

experimental groups, one treated with only NNK (NNK/Air) and other treated with both 

NNK and CS (NNK/CS). The NNK/CS-exposed mice showed a trend of higher tumour 

multiplicity as compared to the NNK/Air-exposed mice in these mouse models. 
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The WGS analysis identified 38 somatic mutations in 36 different genes that were 

common in tumours isolated from NNK/CS and Sal/CS-exposed mice. The genes 

identified in this analysis were found to be mutated in clinical samples of patients with 

BAC as seen in COSMIC database. The analysis of WGS data also revealed the mutational 

processes associated with tumours induced in NNK/CS and Sal/CS-exposed mice by 

generating mutational signatures. The mutational signature revealed that NNK was the 

major contributor of carcinogenesis in NNK/CS-exposed mice  

 

The mouse models where female A/J mice were first exposed to CS followed by NNK 

administration and air recovery period developed BAA. The mouse model where mice 

where exposed to 8 weeks of CS followed by 3 doses of NNK and 8 weeks of air recovery 

period showed 100% tumour incidence in 2 experimental groups, one treated with only 

NNK (Air/NNK) and other treated with both CS and NNK (CS/NNK). The tumour 

incidence was reduced to 25% and 75% in Air/NNK and CS/NNK-exposed mice 

respectively in mouse model where mice were exposed to 8 weeks of CS followed by 1 

dose of NNK and 8 weeks of air recovery period (8wk CS + 1xNNK + 8wk air recovery 

period). This model showed a significantly higher tumour multiplicity in CS/NNK-

exposed mice as compared to Air/NNK-exposed mice. With increase in CS exposure to 12 

weeks followed by 1 dose of NNK and 12 weeks of air recovery period model, the tumour 

incidence was increased to 87.5% in Air/NNK and CS/NNK-exposed mice. This model 

showed a trend of higher tumour multiplicity in Air/NNK as compared to CS/NNK-

exposed mice. 
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Conclusion: When the A/J mice were first treated with NNK followed by CS exposure and 

air recovery period, the mice develop BAA which further progress to BAC with increase 

in CS exposure beyond 24 weeks in NNK/CS-exposed mice. However, the WGS analysis of 

tumours from 3xNNK+36wk CS+27wk air recovery period model revealed NNK as the 

major contributor of carcinogenesis. By exposing the mice first to CS followed by 

administration of reduced dose of NNK in 8wk CS + 1xNNK + 8wk air recovery period 

model the tumour multiplicity was increased in CS/NNK-exposed mice as compared to 

Air/NNK-exposed mice. This suggest that CS might be the major contributor of 

carcinogenesis in this model, however further analysis is required to confirm this. 
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elastance (C) Dynamic elastance (D) Compliance. Here, n=6-8. All data is presented as mean ± SEM. 

**p<0.01. 62 

Figure 3.5 Chronic CS exposure in NNK treated mice for 18 weeks followed by 18 weeks induced BAA in 

NNK/CS-induced mouse: (A) Female A/J mice treated with 3 doses of 100mg/kg NNK or saline 

(control) and exposed to 18 weeks of CS exposure or Air (control) followed by 18 weeks of air 

recovery period (B) Histological section of lung BAA 64 

Figure 3.6 Chronic CS exposure in NNK treated mice for 18 weeks followed by 18 weeks of air recovery 

period induced changes in lung function: (A) Tissue damping (B) Tissue elastance (C) Dynamic 

elastance (D) Dynamic compliance. Here, n=6-8. All data is presented as mean ± SEM. *p<0.05, 

**p<0.01. 66 

Figure 3.7 Chronic  CS exposure of  24 weeks followed by 24 weeks of air recovery period in NNK treated 

mice induced BAA and BAC : (A) Female A/J mice treated with 3 doses of 100mg/kg NNK or saline 

(control) and exposed to 24 weeks of CS exposure or Air (control) followed by 24 weeks of air 

recovery period (B) Bronchioalveolar adenoma with focal high-grade dysplasia (in situ BAC) . 68 

Figure 3.8 Chronic CS exposure in NNK treated mice for 24 weeks followed by 24 weeks of air recovery 

period did not induce changes in lung function: (A) Tissue damping (B) Tissue elastance .(C) Dynamic 

elastance .(D) Dynamic compliance. Here, n=6-8. All data is presented as mean ± SEM. 70 

Figure 3.9 Chronic exposure of CS in NNK treated mice resulted in BAC : (A) Female A/J mice treated with 

3 doses of 100mg/kg NNK or saline (control) and exposed to 36 weeks of CS exposure or Air (control) 

followed by 27 weeks of air recovery period (B) Histological section of lung BAC (C) Tumour incidence 

is calculated per group and is presented as mean. (D) Tumour multiplicity is presented as mean ± 

SEM. For all data n=8/group. **p<0.01. 72 

Figure 3.10 Chronic CS exposure of 36 weeks followed by 27 weeks of air recovery period in NNK 

treated mice induced airway inflammation: (A)Total leukocytes. (B) Macrophages. (C) 

Lymphocytes. (D)Neutrophils. All data is presented as mean ± SEM, n=8/group. *=0.05,**p<0.01 74 

Figure 3.11 Chronic CS exposure in NNK treated mice for 36 weeks followed by 27 weeks of air recovery 

period did not induce any changes in lung function: (A) Tissue damping (B) Tissue elastance .(C) 

Dynamic elastance .(D) Dynamic compliance. Here, n=6-8. All data is presented as mean ± SEM. 76 
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Figure 4.2. Clonal evolution of cancer cells: Carcinogenesis is initiated when healthy cells acquire genetic 

mutations that further provides selective growth and proliferative advantage to the mutated cells. 

Over time, the mutated cell acquires more mutations due to the genetic instability giving rise to 

different clones with a subset of mutations. These clones with greater tumourogenecity outcompete 

the other clones and further acquire more mutations. 112 

Figure 4.3 3 doses of NNK followed by 36 weeks of rest and 27 weeks of air recovery induced BAA and BAC: 

(A) Female A/J mice treated with 3 doses of 100mg/kg NNK or saline (control) i.p. and exposed to 36 

weeks of CS exposure or Air (control) followed by 27 weeks of air recovery period. (B) Lung tumour 

incidence is calculated per group and is presented as mean. (C) Lung tumour multiplicity is presented 

as mean ± SEM. For all data, n=8/group. **p<0.01, ***p<0.001, ****p<0.0001. Note – The individual 

mice in the NNK/Air and NNK/CS experimental groups developed both BAA and BAC. 120 

Figure 4.4 Histological progression of BAA to BAC: (A) BAA with moderate dysplasia. (B) BAA with high 

grade dysplasia (in situ BAC). (C) BAC with anaplasia. (D) BAC. All the sections were taken from 

NNK/CS-exposed mouse. All sections were 5m thick and were H&E stained. 121 

Figure 4.5 Tumours isolated macroscopically from the mouse model of LC: (A) Gross tumour incidence is 

calculated per group and is presented as mean. (B) Gross tumour multiplicity is presented as mean ± 

SEM. (C) Gross tumour diameter. For all data n=8/group. *p<0.05, **p<0.01. 122 

Figure 4.6. Computational pipeline for whole-genome sequencing 123 

Figure 4.7. Somatic mutations identified by WGS in tumours isolated from mouse model of BAC: (A) Single 

nucleotide polymorphisms in NNK/CS and Sal/CS tumour samples. (B) Indels NNK/CS and Sal/CS 

tumour samples. 124 

Figure 4.8. Relative contribution of each somatic point mutation to carcinogenesis: Relative contribution of 

each mutation type to carcinogenesis for each sample. The mean relative contribution of each somatic 

mutation type is depicted as bars and the total number of somatic point mutation is indicated for each 

sample. Image generated using R studio package Mutational pattern. 130 

Figure 4.9. Mutational signature associated with single base substitution: The relative contribution of each 

trinucleotide change in each sample analysed by Mutational pattern. (A) Mutational signature 

associated with NNK/CS. (B) Mutational signature associated with Sal/CS samples. Here, the 

probability bars for each single base substitutions are presented with different colours. The 
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horizontal axes represent the mutation types and the vertical axes represents the relative 

contribution of each mutation type. Image generated using R studio package Mutational pattern. 132 

Figure 4.10. Mutational signature predefined in COSMIC database: (A) Mutational signature 11 (B) 

Mutational signature 1B (C) Mutational signature 3 (D) Mutational signature 4 (E) Mutational 

signature 5. Here, mutational signatures are based on trinucleotide frequency in human cancers. The 

probability bars for each single base substitutions are presented with different colours. The 

horizontal axes represent the mutation types and the vertical axes represents the percentage of each 

mutation type283, 287. 133 

Figure 4.11. Mutational signatures associated with carcinogenesis: The absolute contribution of mutations 

associated with specific mutational signatures to carcinogenesis. Image generated using R studio 

package Mutational pattern 134 

Figure 4.12. Distribution of somatic mutations in the non-coding region of the tumours:  Number of 

mutations in the promoter, promoter flanking region and CTCF binding regions contributing to 

tumour formation in Sal/CS and NNK/CS tumours. Image generated using R studio package 

Mutational pattern. 135 

Figure 5.1 Chronic exposure of CS followed by NNK treatment and air recovery period resulted in BAA : (A) 

Female A/J mice exposed to 8 weeks of CS exposure or Air (control) followed by 3 doses of 100mg/kg 

NNK or saline (control) and 8 weeks of air recovery period (B) Tumour incidence is calculated per 

group and is presented as mean (C) Tumour multiplicity is presented as mean ± SEM. For all data n=6-

8/group. **p<0.01 156 

Figure 5.2 Chronic CS exposure of 8 weeks followed by 3 doses of NNK treatment and 8 weeks of air 

recovery period resulted in increase in neutrophils: (A) Total leukocytes. (B) Macrophages. (C) 

Lymphocytes. (D) Neutrophils. All data is presented as mean ± SEM, n=6-8/group. **p<0.01 158 

Figure 5.3 Chronic CS exposure of 8 weeks followed by 3 doses of NNK treatment and 8 weeks of air 

recovery period induced changes in inspiratory capacity in CS/NNK-exposed mice (A) Inspiratory 

capacity (B) Tissue damping (C) Tissue elastance (D) Dynamic elastance (E) Compliance (F) Dynamic 

compliance Here, n=6-8. All data is presented as mean ± SEM, **p<0.01. 159 

Figure 5.4 Chronic exposure of CS followed by 1 dose of NNK and air recovery period resulted in BAA : (A) 

Female A/J mice exposed to 8 weeks of CS exposure or Air (control) followed by 1 dose of 100mg/kg 

NNK or saline (control) and 8 weeks of air recovery period (B) Tumour incidence is calculated per 
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group and is presented as mean (C) Tumour multiplicity is presented as mean ± SEM. For all data n=7-

8/group. *p<0.05. 161 

Figure 5.5 Chronic CS exposure of 8 weeks followed by one dose of NNK treatment and 8 weeks of 

air recovery period induced airway inflammation : (A)Total leukocytes. (B) Macrophages. (C) 

Lymphocytes. (D)Neutrophils. All data is presented as mean ± SEM, n=7-8/group.*p<0.05,  **p<0.01
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Figure 5.6 Chronic CS exposure of 8 weeks followed by 1 dose of NNK treatment and 8 weeks of recovert 

period did not induce any lung function changes :(A) Inspiratory capacity (B) Tissue damping (C) 

Tissue elastance (D) Dynamic elastance (E) Compliance (F) Dynamic compliance Here, n=7-8. All data 

is presented as mean ± SEM. 165 

Figure 5.7 Chronic CS exposure for 12 weeks followed by NNK administration and 12 weeks of air recovery 

period induced BAA in naïve mice: (A) Female A/J mice exposed to 12 weeks of CS exposure or Air 

(control) followed by 1 dose of 100mg/kg NNK or saline (control) and 12 weeks of air recovery 

period. (B) Tumour incidence is calculated per group and is presented as mean. (C) Tumour 

multiplicity is presented as mean ± SEM. For all data n=6-8/group. *p<0.05. 167 

Figure 5.8 Chronic CS exposure of 12 weeks followed by one dose of NNK treatment and 12 weeks of air 

recovery period induced airway inflammation : (A) Total leukocytes. (B) Macrophages. (C) 

Lymphocytes. (D) Neutrophils. All data is presented as mean ± SEM, n=8/group. 169 

Figure 5.9. Chronic CS exposure of 12 weeks followed by one dose of NNK treatment and 12 weeks of air 

recovery period did not induce any lung function changes: (A) Inspiratory capacity (B) Tissue 
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